25.02.2021 Sustainable harvesting of electrical energy with nanoporous materials - Can phase transitions of water in nanopores be used to generate electrical energy on a larger scale? This is what we, within an international team of researchers, will be investigating in the European Union-funded research project "Energy harvesting via wetting/drying cycles with nanoporous electrodes (EHAWEDRY)", see additional details here (English/German).

Nachhaltige Gewinnung elektrischer Energie mit nanoporösen Materialien

 

01.12.2020 Optofluidic study on liquid imbibition dynamics entitled "Precursor Film Spreading during Liquid Imbibition in Nanoporous Photonic Crystals" has been published in Physical Review Letters. The paper resulted from a collaboration with Luisa Cencha, Claudio Berli and Raul Urteaga from Argentina.

 

27.05.2020 Our article "Ionic liquid dynamics in nanoporous carbon: A pore-size- and temperature-dependent neutron spectroscopy study on supercapacitor materials" has been published as Editors' Suggestion in Physical Review Materials.

 

 

Ionic liquids imbibed in nanoporous carbons are promising hybrid materials for electrochemical energy storage, conversion and harvesting. These functionalities crucially depend on the ionic mobility in the pore space. Here we demonstrate that quasielastic neutron scattering, specifically the so-called fixed energy window experimental technique, is particularly suitable for a fast access of the confined ionic liquid’s dynamic landscape as a function of pore-size and temperature. Compared to the bulk we find reduced self-diffusion mobilities. However, despite this slowing-down, the temperature range of the liquid state upon nanoconfinement is remarkably extended to much lower temperatures, which is beneficial for potential technical applications of such liquid-infused solids.